touchEXPERT OPINIONS

Optimizing management of bronchiolitis obliterans syndrome: Current strategies, future directions

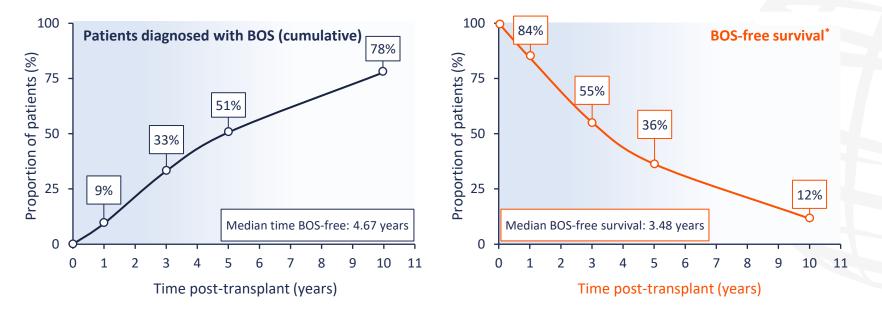
Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

Pathogenesis and burden of bronchiolitis obliterans syndrome on post-lung transplant recipients

Dr Michael Perch

Director of the Danish lung transplant programme and Section Chief Rigshospitalet, University of Copenhagen Copenhagen, Denmark


What is the incidence of BOS following lung transplantation?

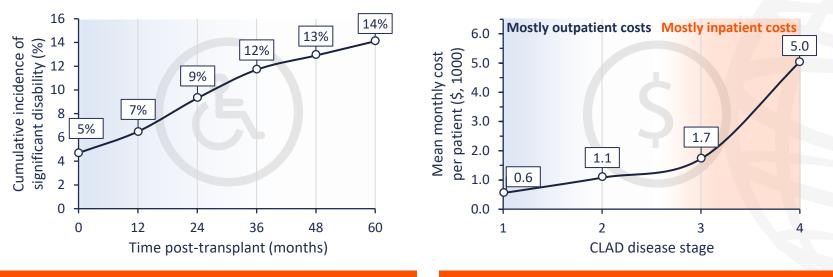
Incidence of BOS post-lung transplantation

ISHLT Thoracic Transplant Registry (1994–2011)

(N=15,268; single LTx: 43%; bilateral LTx: 57%)

IMMUNOLOGY

*BOS-free survival: A composite endpoint that includes patients without BOS and patients who have died. BOS, bronchiolitis obliterans syndrome; ISHLT, International Society for Heart and Lung Transplantation; LTx, lung transplantation. Kulkarni HS, et al. J Heart Lung Transplant. 2019;38:5–16.

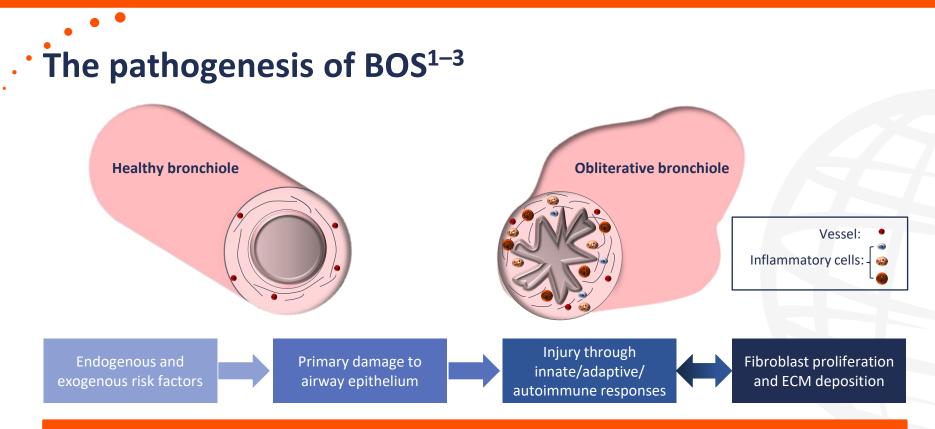

What is the disease burden associated with BOS?

The disease burden associated with BOS

Disability: Prospective single-centre cohort study (Germany, 2010–2020; N=1,025)¹

Economic impact: Retrospective analysis, claims database (2006–2018; N=134)²

Patients with CLAD lost 1.3 life years and lived for 0.8 years with their disability; this added up to 2.1 DALYs/patient¹


BOS post-LTx imposes a large economic burden on patients and healthcare systems, particularly in later stages of disease²

BOS, bronchiolitis obliterans syndrome; CLAD, chronic lung allograft dysfunction; DALY, disability-adjusted life years; LTx, lung transplantation. 1. Diel R, et al. *Adv Respir Med*. 2023;91:432–44; 2. Sheshadri A, et al. *J Heart Lung Transplant*. 2021;40(Suppl. 4):S70.

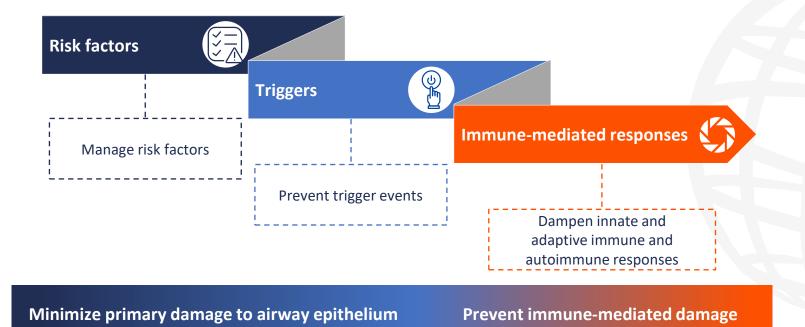
What is the pathogenesis of BOS in lung transplant recipients?

The predominant pathologic mechanism underlying BOS is obliteration of the small airways with advancing atherosclerotic changes in the pulmonary vasculature

BOS, bronchiolitis obliterans syndrome; ECM, extracellular matrix. 1. Arjuna A, et al. *Expert Rev Respir Med*. 2021;15:339–50; 2. Royer P-J, et al. *Transplantation*. 2016;100:1803–14; 3. Cleveland Clinic: Popcorn lung (bronchiolitis obliterans). Available at: <u>https://bit.ly/3VH5pzm</u> (accessed 24 April 2024).

What are the primary triggers for BOS following lung transplantation?

Immune- or non-immune-related factors can increase the risk of, or directly cause, excessive scarring and aberrant healing of the lung allograft leading to BOS and/or RAS


ACR, acute cellular rejection; AMR, antibody-mediated rejection; BOS, bronchiolitis obliterans syndrome; DAD, diffuse alveolar damage; GERD, gastroesophageal reflux disease; IR, ischaemia reperfusion; PGD, primary graft dysfunction; RAS, restrictive allograft syndrome. 1. Royer P-J, et al. *Transplantation*. 2016;100:1803–14; 2. Sato M. *Ann Transl Med*. 2020;8:418; 3. Santos J, et al. *Front Immunol*. 2022;13:908693.

How does current understanding of the pathogenesis of BOS impact management practices?

• A rational approach to the management of BOS^{1–3}

BOS, bronchiolitis obliterans syndrome.

1. Arjuna A, et al. Expert Rev Respir Med. 2021;15:339–50; 2. Glanville AR, et al. ERJ Open Res. 2022;8:00185-2022; 3. Royer P-J, et al. Transplantation. 2016;100:1803–14.

Applying practice guidelines to establish a diagnosis of bronchiolitis obliterans syndrome

Dr Howard J Huang


Chief of the Section of Lung Transplantation Houston Methodist and Weill Cornell Medical College Houston, TX, USA

When, and how, should a lung recipient be monitored for changes in lung function?

CLAD: An umbrella term for the clinical manifestations of pathologic processes in the airway and parenchymal compartments of the lung allograft that occur >3 months after LTx and lead to a significant and persistent deterioration in lung function (with or without chest radiologic changes)²

*Generally sustained beyond 6–12 months post-transplantation.

BL, baseline; CLAD, chronic allograft dysfunction; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; HRCT, high-resolution computerized tomography; LTx, lung transplantation; TLC, total lung capacity. IMMUNOLOGY

1. Meyer KC, et al. Eur Respir J. 2014;44:1479–503; 2. Verleden GM, et al. J Heart Lung Transplant. 2019;38:493–503.

What causes of FEV₁ reduction should be excluded prior to diagnosing CLAD?

Non-CLAD-related reductions in FEV₁^{1,2}

Factors leading to a reduction in FEV_1^*

- Reduced lung function due to normal ageing
- **Surgical**, e.g. transplant lung resection, chest-wall surgery, phrenic nerve damage
- **Mechanical**, e.g. airway stenosis, weight gain, persistent pleural effusion
- Localized infection with chronic scarring, e.g. abscess, empyema or mycetoma

Resetting BL FEV₁ may be valid

- Any factor from column 1 with instability for ≥6 months
- Acute/subacute: Generalized infection, CR or AMR, or effects of aspiration
- Infiltration with **tumour** or infiltration of the **allograft with proven recurrent disease**
- **Pulmonary toxicity** (drug-induced or other)
- Pulmonary arterial strictures or emboli

Resetting BL FEV₁ is <u>never</u> valid

*Patients may also fail to reach a normal predicted lung function due to an age difference between the donor and the recipient, or intra-operative allograft reduction surgery/lobectomy.

AMR, antibody-mediated rejection; BL, baseline; CLAD, chronic allograft dysfunction; CR, cellular rejection; FEV₁, forced expiratory volume in one second. 1. Meyer KC, et al. *Eur Respir J.* 2014;44:1479–503; 2. Verleden GM, et al. *J Heart Lung Transplant*. 2019;38:493–503.

What role do biopsies and bronchoalveolar lavage play in diagnosing CLAD?

• Role of biopsies and BAL in diagnosing of BOS

Transbronchial biopsy^{1,2}

- The gold standard diagnostic modality to rule out other causes of FEV₁ decline, such as ACR
- Cannot reliably identify BOS

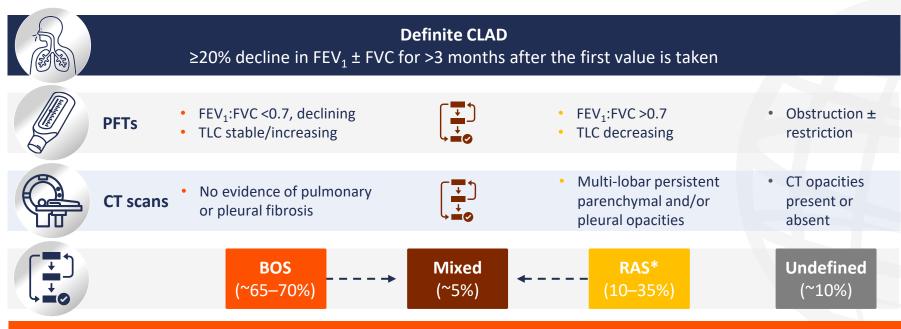
Bronchoalveolar lavage^{1,3}

- Provides information about immunologic, inflammatory and infectious markers
 - BAL neutrophilia has been associated with the development of CLAD
- Should be assessed for signs of aspiration

Transbronchial biopsy and BAL have a major role in identifying treatable causes of reductions in lung function, prior to the diagnosis of definite CLAD

ACR, acute cellular rejection; BAL, bronchoalveolar lavage; BOS, bronchiolitis obliterans syndrome; CLAD, chronic lung allograft dysfunction;

FEV₁, forced expiratory volume in one second.


1. Verleden GM, et al. J Heart Lung Transplant. 2019;38:493–503; 2. Glanville AR, et al. ERJ Open Res. 2022;8:00185-2022;

3. Verleden SE, et al. Transplantation. 2023;107:341-50.

What role do pulmonary function tests and CT scans play in diagnosing BOS?

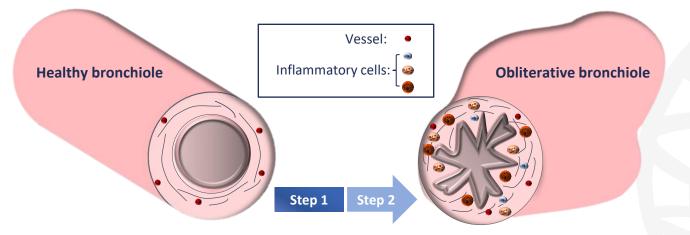
Establishing the CLAD phenotype^{1,2}

Restrictive, obstructive, mixed or undefined clinical phenotypes of CLAD are defined based on the predominant ventilatory pattern, TLC and presence/absence of opacities on chest CT scans

*Proportion of patients vary with different studies, and whether the mixed phenotype is recognized as a separate entity. BOS, bronchiolitis obliterans syndrome; CLAD, chronic lung allograft dysfunction; CT, computerized tomography; FEV₁, forced expiratory volume in one second; FVC, forced vital capacity; PFT, pulmonary function tests; RAS, restrictive allograft syndrome; TLC, total lung capacity. 1. Verleden GM, et al. *J Heart Lung Transplant*. 2019;38:493–503; 2. Glanville AR, et al. *ERJ Open Res*. 2022;8:00185-2022.

Overview of the current treatment landscape for bronchiolitis obliterans syndrome

Dr Aldo Iacono


Professor of Pulmonary and Critical Care and Cardiothoracic Surgery and Director Hofstra University/Northwell Health Hempstead, NY, USA

What is the main treatment goal for patients with BOS and why is it challenging to achieve?

Step 1: Mitigate risk factors and prevent triggers

Step 2: Identify a treatment strategy

The primary goal of treatment is to delay the irreversible, fibrotic airway changes and progressive loss of lung function¹

BOS, bronchiolitis obliterans syndrome. 1. Arjuna A, et al. *Expert Rev Respir Med*. 2021;15:339–50; 2. Cleveland Clinic: Popcorn lung (bronchiolitis obliterans). Available at: <u>https://bit.lv/3VH5pzm</u> (accessed 24 April 2024); 3. Glanville AR, et al. *ERJ Open Res*. 2022;8:00185-2022.

What are the current approaches for managing BOS in the first line?

Strategies for managing BOS in the first line

CNI switch Azithromycin¹ Montelukast¹ (cyclosporin to tacrolimus)^{1,2} May stabilize/slow FEV₁ decline May increase FEV₁ Some evidence for slowed Airway neutrophilia and early FEV₁ decline treatment initiation predict response • May be effective in azithromycin-Recommended to initiate treatment refractory patients with late-onset as early as possible, even prior to stage 1 BOS⁴ No serious adverse effects definite BOS diagnosis Potential adverse effects No improvement in \geq 50% Mixed results of nephrotoxicity and of patients Most common adverse effects are hyperglycaemia Risk of serious infections³ gastrointestinal disorders

BOS, bronchiolitis obliterans syndrome; CNI, calcineurin inhibitor; FEV₁, forced expiratory volume in one second. 1. Glanville AR, et al. *ERJ Open Res*. 2022;8:00185-2022; 2. Meyer KC, et al. *Eur Respir J*. 2014;44:1479–503;

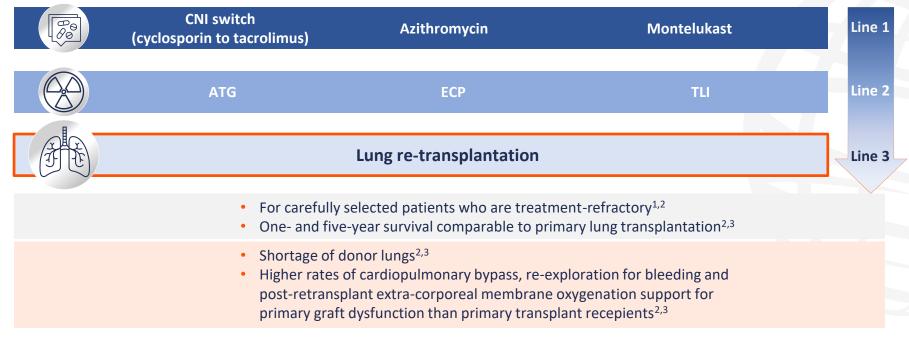
3. FDA. Tacrolimus prescribing information. Available at: https://bit.ly/3UygaTC (accessed 24 April 2024); 4. Ruttens D, et al. PLoS ONE. 2018;13:e0193564.

What are the current approaches for managing BOS in the second line?

• Strategies for managing BOS in the second line

	ATG ¹	E	CP ²	TLI ^{2,3}
•	Appears to be effective in stabilizing or attenuating FEV ₁ decline* May be more effective in early stages of disease	 Slows rate of Fl 	•	Slows rate of FEV ₁ decline, including in azithromycin non-responders
•	Better efficacy and safety profile with rabbit vs equine ATG Common adverse events include infusion-related reactions, CRS, leukopenia, thrombocytopenia and infections	•	universally available • ne for some patients	Treatment discontinuation due to bone marrow suppression and infections

*In a subgroup of patients with CLAD, including RAS.


ATG, anti-thymocyte globulin; BOS, bronchiolitis obliterans syndrome; CLAD, chronic lung allograft dysfunction; CRS, cytokine release syndrome; ECP, extracorporeal photopheresis; FEV₁, forced expiratory volume in one second; RAS, restrictive allograft syndrome; TLI, total lymphoid irradiation. 1. Bos S, et al. *Pharmacol Rev.* 2023;75:1200–17; 2. Glanville AR, et al. *ERJ Open Res.* 2022;8:00185-2022; 3. Arjuna A, et al. *Expert Rev Respir Med.* 2021;15: 339–50.

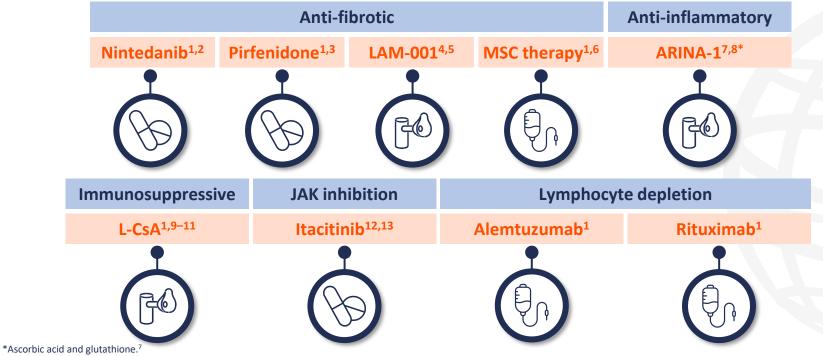
When should patients be referred for re-transplantation?

• Treatment options for BOS in the third line

ATG, anti-thymocyte globulin; BOS, bronchiolitis obliterans syndrome; CNI, calcineurin inhibitors; ECP, extracorporeal photopheresis; TLI, total lymphoid irradiation. 1. Glanville AR, et al. *ERJ Open Res*. 2022;8:00185-2022; 2. Arjuna A, et al. *Expert Rev Respir Med*. 2021;15:339–50; 3. Roy SB, et al. *Ann Thorac Surg*. 2018;105:221–7.

Expanding the armamentarium: Future directions for bronchiolitis obliterans syndrome

Dr Aldo Iacono


Professor of Pulmonary and Critical Care and Cardiothoracic Surgery and Director Hofstra University/Northwell Health Hempstead, NY, USA

What are some of the key agents under investigation for managing BOS post-lung transplantation?

Investigational agents for BOS post-lung transplant

IMMUNOLOGY

BOS, bronchiolitis obliterans syndrome; JAK, Janus kinase; L-CsA, liposomal cyclosporine A; MSC, mesenchymal stem cell.

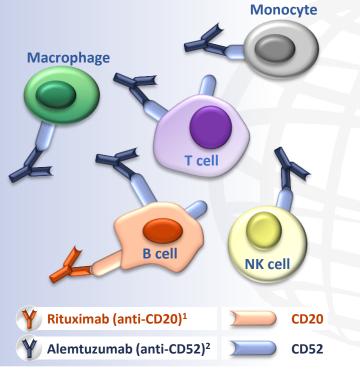
1. Glanville AR, et al. ERJ Open Res. 2022;8:00185-2022; 2. ClinicalTrials.gov. NCT03283007; 3. ClinicalTrials.gov. NCT02262299; 4. ClinicalTrials.gov. NCT06018766;

5. Arjuna A, et al. Expert Rev Respir Med. 2021;15:339–50; 6. ClinicalTrials.gov. NCT02181712; 7. ClinicalTrials.gov. NCT05654922; 8. Clinical Trials Arena.

Available at: https://bit.ly/3Q3yBxb (accessed 24 April 2024); 9. ClinicalTrials.gov. NCT03657342; 10. ClinicalTrials.gov. NCT03656926; 11. ClinicalTrials.gov. NCT04039347; 12. ClinicalTrials.gov. NCT04640025; 13. ClinicalTrials.gov. NCT03978637.

Clinical trials are available at: https://ClinicalTrials.gov using the study identifier (accessed 24 April 2024).

What role could lymphocyte depletion play in managing BOS in lung transplant recipients?


Role of lymphocyte depleting agents in managing BOS

Rituximab

- CTOTC-08 trial; paediatric patients post-LTx (N=27): Rituximab induction + SoC* significantly reduced incidence of DSA development vs placebo + SoC (p=0.017)¹
- Retrospective chart review (2008–2018, N=8): Rituximab may prevent progression of AMR in selected patients²

Alemtuzumab

- The United Network for Organ Sharing database; adult double LTx recipients, 2006–2013 (N=6117): Lower incidence of BOS at 5 years with alemtuzumab induction vs basiliximab or no induction (p<0.001)³
- LTx recipients treated with rescue alemtuzumab (N=51): Freedom from BOS progression was 53% at 180 days⁴
- Retrospective studies and a case series report attenuation of lung function decline, particularly for early vs late-stage BOS;^{3–5} it is unclear if this is a direct effect of treatment⁶
- Associated with a high risk of infectious complications⁶

*SoC includes RATG and tacrolimus, mycophenolate mofetil, and corticosteroid maintenance immunosuppression.¹

AMR, antibody-mediated rejection; BOS, bronchiolitis obliterans syndrome; CD, cluster of differentiation; DSA, donor specific antibody;

LTx, lung transplant; NK, natural killer; RATG, rabbit anti-thymocyte globulin; SoC, standard of care.

1. Sweet SC, et al. Am J Transplant. 2022;22:230–44; 2. Yamanashi K, et al. Gen Thorac Cardiovasc Surg. 2020;68:142–9; 3. Furuya Y, et al. Am J Transplant. 2016;16:2334–41;

4. Ensor CR, et al. Clin Transplant. 2017;31:e.12899; 5. Glanville AR, et al. ERJ Open Res. 2022;8:00185-2022; 6. Bos S, et al. Pharmacol Rev. 2023;75:1200–17.

 What role could antifibrotic agents play in treating patients who develop BOS post-transplantation?

Clinical trials of anti-fibrotic agents for managing BOS

Agent		Nintedanib ¹	Pirfenidone ^{2,3}	LAM-001 ⁴	MSC therapy ^{5,6}
Study		INFINITx-BOS, phase III NCT03283007	EPOS, phase II/III NCT02262299	INSPO-BOS, phase II NCT06018766	Phase I NCT02181712
Regimen		150 mg BID vs placebo over 6 months	Titrated to 2,403 mg/day vs placebo over 6 months	QD vs placebo over 48 weeks	0.5 or 1.0 million cells/kg
Patients	o ^{c‡} o C C	 N=80 BOS (Grade 0p-2) post-single/double LTx Azithromycin ≥4 weeks prior to the end of the screening period 	 N=90 BOS (Grade 1–3) post- double LTx Azithromycin ≥4 weeks prior to the study start 	 N=30 BOS post-double LTx No oral sirolimus or everolimus ≥4 weeks prior to screening 	 N=13 Moderate-to-severe BOS (Grade 3) post-single/ double LTx Treatment refractory
Primary Endpoint	ìťĺ	Reduction in rate of decline of FEV ₁ over 6 months	Change in FEV_1 over 6 months	PFS and change in FEV ₁ over 48 weeks; safety and tolerability	Safety and change in PFTs over 2 weeks
Completion		Estimated completion June 2024	 Completed December 2019 Negative results⁷ 	Estimated completion December 2025	 Completed August 2021 Well tolerated, with evidence of stabilized FEV₁

BID, twice daily; BOS, bronchiolitis obliterans syndrome; FEV₁, forced expiratory volume in one second; LTx, lung transplant; MSC, mesenchymal stem cell; PFS, progression-free survival; PFT, pulmonary function test; QD, every day.

1. ClinicalTrials.gov. NCT03283007; 2. ClinicalTrials.gov. NCT02262299; 3. Perch M, et al. *J Heart Lung Transplant*. 2020;39:S12; 4. ClinicalTrials.gov. NCT06018766; 5. ClinicalTrials.gov. NCT02181712; 6. Erasmus DB, et al. *Stem Cells Transl Med*. 2022;11:891–9; 7. Glanville AR, et al. *ERJ Open Res*. 2022;8:00185-2022. Clinical trials are available at: <u>https://ClinicalTrials.gov</u> using the study identifier (accessed 24 April 2024).

What role could aerosolized liposomal cyclosporine play in managing BOS post-lung transplantation?

Clinical trials of L-CsA for managing BOS

Agent		L-CsA			
Study		BOSTON-1, phase III ¹ NCT03657342	BOSTON-2, phase III ² NCT03656926	BOSTON-3, phase III OLE ³ NCT04039347	Phase IIb ^{4,5} NCT01650545
Regimen		5 mg BID + SoC vs SoC alone for 48 weeks	10 mg BID + SoC vs SoC alone for 48 weeks	5 mg BID + SoC or 10 mg BID + SoC for 24 weeks	5 mg or 10 mg BID* + SoC vs SoC alone for 48 weeks [†]
Patients	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	 N=220 BOS post-single LTx Tacrolimus-based SoC 	 N=220 BOS post-double LTx Tacrolimus-based SoC 	 N=262 Completed participation in BOSTON-1 or BOSTON-2 	 N=21 BOS (Grade 1 or 2) post-single/double LTx Tacrolimus-based SoC
Primary Endpoint	MÍ	Mean change in FEV ₁ from BL to Week 48	Mean change in FEV ₁ from BL to Week 48	Mean change in FEV ₁ from BL to Week 24	PFS [‡] and BOS progression by grade change over 48 weeks
Completion	Ê,	Estimated completion November 2024	Estimated completion October 2024	Estimated completion September 2024	 Completed November 2019 Stabilized FEV₁ without systemic toxicity

*5 mg L-CsA for single LTx and 10 mg for double LTx. [†]Patients in the L-CsA arm received L-CsA for 24 weeks followed by SoC for 24 weeks.

[‡]Absence of \geq 20% decline in FEV₁, re-transplantation or death.

BID, twice daily; BL, baseline; BOŠ, bronchiolitis obliterans syndrome; FEV₁, forced expiratory volume in one second; L-CsA, liposomal cyclosporine A; LTx, lung transplant; OLE, open label extension; PFS, progression-free survival; SoC, standard of care.

1. ClinicalTrials.gov. NCT03657342; 2. ClinicalTrials.gov. NCT03656926; 3. ClinicalTrials.gov. NCT04039347; 4. Iacono A, et al. *ERJ Open Res.* 2019;5:00167-2019; 5. ClinicalTrials.gov. NCT01650545. Clinical trials are available at: https://ClinicalTrials.gov using the study identifier (accessed 24 April 2024).

How do you think the clinical management of patients with BOS post-transplantation may change in the future?

