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In recent years, artificial intelligence (AI) has blossomed via the booming increase in computing power, access to large data sets and 
the development of novel data science techniques and architectures. This has led to a great interest in the clinical deployment of AI in 
healthcare. In this review, we look particularly at the field of musculoskeletal medicine and have curated the latest progress in AI and 

machine learning in the areas of inflammatory arthritis, vasculitis and connective tissue diseases, osteoporosis, Ehlers–Danlos syndrome, 
osteoarthritis and musculoskeletal surgical interventions. We also highlight the challenges and pitfalls as clinical AI moves forward.

There is much excitement about the deployment of artificial intelligence (AI) in healthcare, and the 

musculoskeletal field is no exception. In this article, we introduce some of the latest developments 

relating to osteoarthritis (OA), osteoporosis, rheumatoid arthritis (RA) (as an example of 

inflammatory arthritis), connective tissue disease (CTD), Ehlers–Danlos syndrome (EDS) and 

musculoskeletal surgical interventions.

Artificial intelligence
AI is the ability of machines to imitate human behaviour. Machine learning (ML) is a branch of AI that 

uses computer algorithms to automatically learn from input data and through the identification of 

patterns to make accurate predictions with minimal human intervention. ML algorithms do not 

rely on a predetermined equation as a model but adaptively improve their performance as more 

data are provided.

ML is increasingly being used in medical applications to independently and efficiently carry out 

specified tasks, such as image processing in radiology and histopathology and the identification of 

disease markers, and in the field of drug discovery.

The process by which ML algorithms learn is called ‘training’, and the training methods are 

classified as supervised, unsupervised or reinforcement learning. Supervised learning involves 

training algorithms to predict future values through learning patterns from labelled input data, for 

example, accurately predicting the opacification on a chest X-ray through training with images that 

are labelled as normal or abnormal.

Supervised learning algorithms use classification, regression and forecasting approaches. 

In classification models, the algorithm must draw a conclusion from the observed values and 

determine to which category new observations belong. In regression tasks, the ML algorithm must 

estimate and understand the relationships among variables. Forecasting is the process of making 

predictions about the future based on past and present data and is commonly used to analyse 

trends.

In unsupervised learning, the input data are not assigned or labelled. Instead, the algorithm infers 

the underlying patterns and relationships within the input data, which is useful, for example, in 

finding patterns in blood biomarkers that are associated with a particular disease state. Clustering 

is a type of unsupervised learning that involves grouping sets of similar data based on the defined 

criteria. It is useful for segmenting the data into groups and performing analysis on each data set to 

find patterns. Dimension reduction is another type of unsupervised learning that gradually reduces 

the number of variables being considered to find the exact information required. In reinforcement 

learning, the algorithm achieves a specified goal by interacting with an environment through trial 

https://doi.org/10.17925/rmd.2025.4.1.3


16�

Review Musculoskeletal Diseases

touchREVIEWS in RMD

Figure 1: Schematic representations of machine learning and deep learning methods

LASSO = least absolute shrinkage and selection operator.
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and error. This type of method is commonly applied in the field of robotic 

surgery.

Examples of ML algorithms are shown in Figure  1 and described in 

greater depth in the glossary (online supplementary file 1).

Inflammatory arthritis
Inflammatory arthritides are characterized by joint inflammation, leading 

to clinical signs, such as pain, swelling, heat and erythema. This collection 

of rheumatological conditions encompasses those causing inflammation 

due to various aetiologies, including autoimmunity, crystals and reactive 

processes. In this review, the focus will be on RA as a vital example of 

inflammatory arthritis.

RA is a chronic, systemic autoimmune disease leading to inflammatory 

arthritis, typically involving the small joints that can result in joint 

destruction and severe functional impairment.1 RA is a heterogeneous 

disease with a wide variation in the age of onset, degree of joint 

involvement and severity. The diagnosis is based on clinical criteria, 

and there is no definitive diagnostic test available to differentiate RA 

from other inflammatory joint diseases.2 The aim of treatment for RA 

is to reduce inflammation and prevent joint destruction, and it includes 

corticosteroids, conventional disease-modifying anti-rheumatic drugs 

(DMARDs) and an ever-expanding list of targeted biological therapies.3 

Patients have variable response and remission rates to different 

treatment strategies, and identifying responders from non-responders is 

difficult. However, early diagnosis and prompt initiation of treatment are 

important in the prevention of inflammatory joint destruction. AI and ML 

are increasingly being used to address the unmet needs in the diagnosis, 

monitoring and treatment of RA, and in this section, we review the latest 

developments.4

Machine learning in inflammatory arthritis 
diagnosis
AI and ML for diagnostic purposes use the data from electronic health 

records (EHRs), diagnostic biomarkers and imaging modalities to identify 

patients with RA at an early stage of the disease.

Electronic health records
The phenotypic identification of RA using data from EHRs was first 

carried out in 2010 using a support vector machine (SVM) model, which 

accurately predicted RA disease activity from the data containing 

specific terms (area under the curve [AUC] >0.90).5 The comparison of 

different ML methods using a 10-fold cross-validation from thousands of 

EHRs showed that an SVM model performed best in identifying patients 

with RA in <7  s (an AUC of 0.98 and a positive predictive value [PPV] 

of 0.94).6 The model compared favourably with manual methods.7 A 

random forest method and a decision tree model identified the best 

predictors of RA, such as local coding for RA; clinical features, such as 

nodules, seropositivity and arthropathy and drugs, such as prednisolone, 

methotrexate, sulfasalazine and leflunomide, from EHRs, with a PPV of 

85.6%, specificity of 94.6% and sensitivity of 86.2%.8

Molecular markers
Random forest, logistic regression and other statistical models have 

differentiated patients with RA from controls using gene expression 

signatures, with an AUC of 0.96.9,10 Artificial neural networks (ANNs) 

have successfully distinguished RA from OA and psoriatic arthritis (PsA, 

another form of inflammatory arthritis) using serum protein profiles 

identified through mass spectrometry and immunoassays, although the 

AUC varies significantly.11–13

Imaging techniques and histopathology
Supervised and unsupervised algorithms have been used, together with 

imaging techniques, for RA diagnosis. ANN models trained and tested 

on hand radiographs accurately classified RA with an AUC of 0.97, a 

sensitivity of 90.7% and a specificity of 92.6%.14,15 Larger data sets 

have allowed the effective differentiation of RA and OA.16 ANNs also 

identified synovial proliferation in joint ultrasound with an AUC of 0.863–

0.886, depending on the joint area sampled.17,18 A systemic review and 

meta-analysis of computer-assisted magnetic resonance imaging (MRI) 

showed a good correlation with manual methods in RA diagnosis.19 

Thermal imaging of diurnal joint temperatures has been studied, with 

quantum SVM models used to improve the accuracy.20,21 Scoring 

algorithms based on features, such as inflammatory infiltrates and 

hyperplasia in stained synovial tissue, have demonstrated considerable 

efficacy in differentiating RA, OA and PsA from normal tissue (AUC 

0.87–0.98).22,23

Disease progression and disease activity
Once RA is diagnosed, an ongoing assessment is vital to monitor the 

disease activity. An ordinal regression-based ML model developed to 

estimate the Clinical Disease Activity Index (CDAI) scores was trained 

and validated on 11,985 patient notes with CDAI scores from the OM1 

RA registry (OM1® real-world data and AI for research [OM1, Boston, MA, 

USA).24 The model had a PPV of 0.80, a negative predictive value of 0.84 

and an AUC of 0.88 when evaluating the performance using the binarized 

(negative CDAI score ≤10 or positive CDAI score ≥10.1) version of the 

outcome.

Predicting treatment response
ML techniques have shown promise in the evaluation of treatment 

response to DMARDs and biologics. Least absolute shrinkage and 

selection operator and random forest methods showed that patients 

with RA with a low baseline Disease Activity Score in 28 joints (DAS28)-

erythrocyte sedimentation rate (ESR) score, positive anti-citrullinated 

protein antibody and the Health Assessment Questionnaire ≤2 were 

most likely to respond well to methotrexate (AUC of 0.68 and 0.79, 

respectively).25 Conversely, a DAS28-ESR score (>3.2) at 3 months post-

methotrexate treatment predicted a poor therapeutic response with 

different methods.26 Elastic net models demonstrated a 3.6-fold better 

response to anti-tumour necrosis factor (TNF) biologics in males, and 

using genetic data, carriers of the resistin gene rs3219177 polymorphism 

had a sixfold better response than non-carriers. In a subsequent 

study, carriers of the TLR9 gene rs352139 polymorphism were found 

to have a fivefold better response to anti-TNF than non-carriers.27,28 

ML using biomarker signatures in blood or synovial tissue has reliably 

predicted responses to other biologics (e.g. rituximab, tocilizumab and 

sarilumab).29–31

Vasculitis and connective tissue disease
Vasculitis is a complex group of rare rheumatic diseases characterized 

by inflammation of blood vessels that present considerable diagnostic 

and therapeutic challenges. Recent studies using AI techniques have 

attempted to support earlier diagnosis, treatment optimization and 

prognosis prediction.32–34

The diagnosis of vasculitis relies upon the recognition of characteristic 

clinical features often alongside the use of imaging or biopsy. ML 

techniques show great promise for supporting this process, with studies 

using natural language processing to differentiate vasculitis from clinical 

notes, deep learning algorithms (such as U-Net) to detect features 
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on medical imaging and supervised learning approaches to identify 

predictive biomarkers detectable from blood samples.35–41

Treatment typically includes induction through high-dose corticosteroids 

followed by maintenance with ‘steroid-sparing’ agents. However, 

variability in treatment response combined with common side effects 

makes management fraught with difficulty. ML has been used to address 

treatment challenges through supervised algorithms (including random 

forest and light gradient boosting models) to predict relapse after 

glucocorticoid tapering in giant cell arteritis and the development of 

models predicting resistance to intravenous immunoglobulin therapy in 

Kawasaki’s disease.32,42,43

The risk of morbidity following a diagnosis of vasculitis is significant, 

and understanding the prognostic risk factors is essential to tailor 

management strategies. Emerging ML-based tools show promise, 

especially in predicting eye diseases from clinical data (using ensemble 

algorithms, such as XGBoost) or angiography imaging and risk of renal 

damage in immunoglobulin A (IgA) vasculitis based on patients’ clinical 

features.44–46

With only 26 primary research studies published over the last 20 years 

using AI methods in vasculitis, and the majority investigating Kawasaki’s 

disease (n=12), there is still a dearth of available evidence despite many 

studies showing highly promising results.47–57

Autoimmune CTDs are systemic in nature and characterized by a 

variety of phenotypes. ML techniques have begun to revolutionize the 

study of these varied diseases, providing tools for improving diagnostic 

approaches, the classification of disease subtypes and predicting factors 

associated with treatment response and the development of disease-

related complications.

CTDs present a diagnostic challenge for clinicians, and many studies 

using ML focus on demonstrating accurate tools to support the diagnostic 

process. There are encouraging studies investigating gene expression 

data as novel biomarkers in CTDs, but perhaps, the approaches closer 

to clinical implementation are those using deep learning to support and 

automate the interpretation of clinical data (including point-of-care tests, 

radiological imaging and biopsies).58–71 An interesting example includes 

the use of deep learning to differentiate systemic sclerosis from primary 

Raynaud’s syndrome using a low-cost digital nailfold capillaroscope, an 

underused tool in which AI may support more widespread use.63

The spectrum of CTD presentations highlights the importance of 

classification, subtype definition and tailored treatment strategies. Data 

mining and supervised approaches have been used to discriminate 

subtypes of Sjögren’s syndrome and lupus based on clinical data, in 

addition to multiple studies investigating the classification of myositis 

using electromyography and MRI data.72–76

Many of the AI-based studies on CTDs aim to predict outcomes and 

treatment responses to inform a personalized management approach. 

Multiple ML approaches have been used to predict complications and 

comorbidities in lupus (including nephritis), pulmonary involvement in 

systemic sclerosis and response to immunomodulatory treatments.77–97

Osteoporosis
Osteoporosis is characterized by reduced bone mineral density (BMD), 

leading to a predisposition to a fragility fracture. The diagnosis is 

complicated by the absence of symptoms or clinical signs and is reliant 

on measures of BMD. BMD is primarily derived from dual-energy X-ray 

absorptiometry (DXA) as a single parameter, and it is this measurement 

that informs the densitometric diagnosis of osteoporosis, defined as a 

BMD T-score of ≤-2.5. AI techniques have been used to interrogate ‘omic’ 

data sets to identify biomarkers and therapeutic targets in osteoporosis, 

as they have in most major disease areas; however, the focus of this 

review will be on the deployment of AI on skeletal imaging (computer 

vision) in the field of osteoporosis.98,99

The major aims of computer vision in osteoporosis are as follows:

•	 use DXA images to improve fracture prediction beyond BMD

•	 opportunistically measure BMD from routinely performed imaging

•	 opportunistically identify vertebral fractures from routinely 

performed imaging

•	 derive bone microarchitecture features.

It is worth noting that, in the field of osteoporosis, the outcome of 

interest can be either the diagnosis of osteoporosis or the assessment 

of fracture risk. Although the former was vital for defining the disease 

and developing the field, the measures of the latter (fracture risk) are 

used to adjudicate treatment thresholds via fracture risk-prediction tools, 

including The Fracture Risk Calculator (FRAX®), which provides a 10-year 

estimation of major osteoporotic risk and hip fracture risk.100 This is, in 

part at least, as over half of fragility fractures occur at a normal BMD 

and so a pure focus on the diagnosis of osteoporosis would miss a large 

proportion of those at risk of fracture. Indeed, fractures are associated 

with high morbidity and mortality, surpassing simply the densitometric 

diagnosis of osteoporosis.

As mentioned earlier, the DXA scan is performed to provide a measure 

of BMD (via levels of beam attenuation), but the rest of the DXA image 

(of the hips and anterior–posterior spine) is neglected unless a lateral 

image of the spine is acquired as a vertebral fracture assessment. These 

acquired, but underused, DXA images are ripe for computer vision 

analyses.

Indeed, a meta-analysis of seven studies that attempt to improve the 

diagnosis of osteoporosis via hip DXA images found a pooled sensitivity 

of 0.844 (95% confidence interval [CI], 0.79–0.89), a pooled specificity 

of 0.781 (95% CI, 0.73–0.82) and a summary of receiver operating 

characteristic AUC of 0.878.101 Although these results are encouraging, 

DXA imaging is limited by quality due to artefacts of soft tissue and 

degenerative sclerosis and, in a clinical setting, is only performed to 

assess BMD. Plain radiographs and computed tomography (CT) are 

imaging modalities that are used for a plethora of clinical indications and 

often contain skeletal elements. These images could all contribute to the 

assessment of skeletal health opportunistically.

This has led to studies showing that abdominal CT can predict lumbar 

spine BMD (AUC 0.96–0.97), chest CT scans (performed for lung cancer 

screening) can discriminate osteoporosis from normal participants (AUC 

0.97) and lateral spine X-rays can identify osteoporosis, though with a 

lower degree of accuracy (AUC 0.85).102,103

Vertebral fractures are often missed on routine imaging, and hence, 

models have been developed using deep learning (amidst other 

methods) to identify vertebral fractures from lateral spine radiographs 

(AUC 0.93) and sagittal reconstructions of CT images.104,105
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Bone is composed of two compartments, cortical and trabecular, and 

information regarding these compartments can provide more detailed 

‘bone microarchitectural’ measures of bone strength and resistance to 

fracture than simply BMD alone. This microarchitecture can be derived 

from specialist scans currently largely used in research settings, including 

high-resolution peripheral quantitative CT (HR-pQCT). Computer vision 

analyses of HR-pQCT have demonstrated excellent discrimination for 

prevalent fractures with an AUC of 0.85–0.97 using a gradient boosting 

machine and statistical shape mapping.106–108 What is more, there are 

efforts, using AI, to derive some microarchitectural features (though only 

from the trabecular compartment) from the DXA imaging.109

In conclusion, computer vision analyses have improved the identification 

of fracture risk on DXA images, developed the opportunistic screening 

of BMD and vertebral fractures and shown promise for deriving bone 

microarchitectural properties from clinically applicable imaging 

modalities.

Ehlers–Danlos syndrome
EDSs are a group of inherited disorders of connective tissue. Within this 

group, there are 14 recognized EDS subtypes, 13 of which are genetically 

characterized. The clinical presentation commonly includes features 

such as joint hypermobility, skin hyperextensibility, abnormal wound 

healing and widespread pain. Similar to connective tissue disorders, 

EDSs are not solely disorders of the musculoskeletal system but are 

complex multi-system disorders due to the role of connective tissue 

throughout the body. AI tools in development may eventually assist in 

the diagnosis of EDS, with two current examples being video assessment 

of joint hypermobility and the classification of rare diseases via analysis 

of patient-created pain drawings.

A thematic clinical feature of EDS is generalized joint hypermobility. The 

clinical finding of joint hypermobility is a core diagnostic feature measured 

through the Beighton examination completed using a goniometer. 

However, the use of a goniometer is uncommon in actual clinical 

practice, and evidence of inter-rater reliability in the Beighton score 

reporting is limited or conflicting.110 Mittal et al. have devised a method 

to apply computer vision to smartphone camera footage of patients, with 

the goal of creating a more objective, validated and scalable method 

for assessing hypermobility.111 This provides an excellent case study to 

highlight the design of research in the field of musculoskeletal AI.

The footage will be analysed using ML algorithms from the existing open-

source human pose-estimation models, which use the video input to 

create an output of the location and angles of joints in the body. Pose-

estimation models lack training data on generalized joint hypermobility, 

potentially creating out-of-distribution errors for the pose libraries. The 

authors plan to address this by additional fine-tuning of the models with 

manually annotated examples of hyperextended joints. The method 

is planned to be validated compared with the ground truth of expert 

clinicians using the goniometer-validated assessment.

The outcomes of the pre-registered trial are awaited in 2024 (Assessing 

the Feasibility of a Smartphone-based, Machine Learning Visual Imaging 

Application for Assessment of Hyperextensibility of Peripheral Joints in 

Ehlers Danlos Syndrome; ​ClinicalTrials.​gov identifier: NCT05366114), and 

the authors anticipate possible use cases as a triage tool for specialized 

EDS clinic referrals.112

Chronic pain is another thematic clinical feature of EDS. There are 

many aetiologies of chronic pain, including other rare diseases, and 

management is informed by the underlying cause. Emmert et al. 

developed an algorithm trained to distinguish between patterns of chronic 

pain caused by different rare diseases.113 The input data to the algorithm 

were pain drawings. Pain drawings are made by patients who mark 

where they experience pain on a 2D outline of a human body to create 

a visual representation of their pain (instead of relying on language). The 

authors used an open-source platform ‘Pain2D’ to collect the data from 

patients with specific known rare disease diagnoses involving chronic 

pain: EDS, Guillain–Barré syndrome, facioscapulohumeral muscular 

dystrophy, proximal myotonic myopathy and a control group with non-

specific chronic pain. An overall pain profile for each disease category 

was created using this platform by calculating the frequency with which 

each pixel in the pain drawing was marked over all instances of each 

diagnostic category. Pain profiles summarizing different diagnostic 

categories were then compared with the known cases (leave-one-out 

cross-validation) by a mathematical coefficient of similarity – the highest-

scoring pain profile was chosen as the output classification. This method 

classified EDS among the five diagnostic categories with a sensitivity 

of 64.4% and a specificity of 88.7%. Significant limitations include the 

absence of pain-drawing data from other diagnostic categories of chronic 

pain and small data sets within the existing categories that precluded the 

use of deep learning by convolutional neural networks (CNNs).

It is anticipated that these study areas will be developed and built upon 

but provide good examples of AI study designs that have the potential to 

be used across musculoskeletal disorders.

Osteoarthritis
OA is a common joint disease affecting millions of people throughout the 

world but is plagued by a disconnect between clinical and radiographic 

diseases. In recent years, ML and AI techniques have shown promise for 

enhancing OA diagnosis, care and management.114 This section seeks to 

give readers an overview of the most recent developments in ML and AI 

applications in the field of OA.

Early diagnosis and disease progression detection
Early diagnosis and detection algorithms use a variety of data sources, 

including patient-reported outcomes and medical imaging (X-rays and 

MRI scans), to detect the patterns and signals linked to the disease. This 

can take different approaches, but one study combined clinical, imaging 

and demographic features using a multi-modal feature integration 

method using an L-1 normalization approach to minimize the number 

of irrelevant features from each modality.115 Early OA symptoms can 

be recognized so that therapies can start sooner, possibly slowing the 

disease’s progression.

To develop predictive models for OA progression, ML algorithms have 

been trained on big data sets combining patient demographics, clinical 

data and imaging results. These models determine the chance that an 

illness will progress and assist physicians in selecting the best course 

of action, potentially improving patient outcomes via a clinical decision 

support system. One research presented a CNN model referred to as 

the YOLOv3 tiny-based object identification approach to automatically 

detect and categorize knee OA according to the Kellgren–Lawrence (KL) 

classification scheme.116 The strategy used two models, one for classifying 

severity (progression) and the other for distinguishing between healthy 

and osteoarthritic knees. The CNN model sought to assist radiologists 

and orthopaedic surgeons by correctly identifying and classifying knee 

OA across various stages. Another research introduced DenseNet169 

as a model for the effective diagnosis of knee OA.117 It compared 

DenseNet169’s performance with five other deep learning systems and 
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highlighted its efficacy in finding knee OA and determining its severity 

through multi-classification (accuracy of 95%, sensitivity of 88.77%, 

specificity of 95.41% and precision of 87.08%) and binary classifications 

(accuracy of 93.78%, sensitivity of 91.29%, specificity of 87.57% and 

accuracy of 89.27%). The suggested methodology showed potential in 

relieving radiologists’ burden, enabling early diagnosis and saving time 

and expense related to knee OA diagnosis. It used a weighted training 

approach and incorporated gradient-weighted class activation mapping, 

a heatmap-based algorithm that deep learning models used to visualize 

and decipher the significant areas of an image (using gradients in the 

final convolutional layer) that influence the model’s prediction.

Treatment plans for people with OA have been improved using ML and 

AI techniques. Algorithms can recommend personalized treatment 

programmes that are suited to each patient’s needs by examining patient 

data, including medical history, genetic factors and lifestyle variables. By 

identifying the most efficient interventions and minimizing the process of 

trial and error while choosing treatments, this strategy seeks to improve 

patient outcomes.

One study found that AI-aided clinician diagnostic ratings have a stronger 

correlation with the total KL scores and Knee Injury and Osteoarthritis 

Outcome Scores than those by unaided physicians, increasing the 

consistency and precision of OA diagnosis.118 The KL score appears to be 

a limited tool on its own, with only a modest relationship between clinical 

severity and radiographic assessments. AI assistance has the potential 

to address the disconnect between radiological OA severity and clinical 

symptoms, resulting in more precise detection and better patient care.

The use of wearable and sensor technologies in conjunction with ML 

algorithms enables remote monitoring of patients with OA. These 

devices can monitor joint motion, levels of activity and other important 

factors. Clinicians can provide real-time feedback and useful insights 

into patient situations by analysing the acquired data, enabling proactive 

management and intervention. For monitoring human movement, 

wearable sensors provide an affordable and practical alternative 

to optical motion capture.119 Large amounts of real-world data can 

be provided by them, enabling remote monitoring, resolving time 

restrictions in the delivery of remote treatment and encouraging patient 

interaction. For movement analysis, accelerometers, gyroscopes and 

magnetometers are frequently combined into inertial measurement 

units for cost-efficiency and usability in large cohorts. For people with 

hip or knee OA, including those who have had joint replacement surgery, 

wearable sensors hold great promise for improving research and care.

Another study validated a remote patient monitoring system for 25 

patients with OA undergoing total knee arthroplasty using a wearable knee 

sleeve and smartphone applications.120 The sleeve accurately measured 

mobility, range of motion, patient-reported outcome measures, opioid 

compliance and home exercise compliance. Such studies demonstrate 

the potential of AI-augmented remote patient monitoring for evaluating 

hip and knee arthroplasty recovery and rehabilitation.

In OA management, persistent challenges remain around the quality 

and accessibility of data. Obtaining comprehensive data sets spanning 

diverse patient profiles, multiple data modalities and longitudinal records 

remains a hurdle, essential for training reliable ML models. Another 

critical challenge lies in the interpretability and explainability of these 

models; understanding the rationale behind their diagnoses or treatment 

suggestions is crucial for building trust among healthcare professionals 

and patients. Additionally, ensuring the ethical use of sensitive medical 

information while maintaining patient privacy poses an ongoing concern. 

Moreover, integrating these advanced technologies safely into clinical 

workflows and healthcare systems presents a significant challenge for 

wider adoption and practical implementation in real-world settings.

Musculoskeletal surgical interventions
The sphere of surgical intervention has notably benefitted from the 

introduction of AI-aided technologies, which present the potential to 

amplify several aspects of surgical care.121–128 The purview of these tools 

encompasses diagnosis and planning to intraoperative guidance.121–128 

A salient advantage rests in their capacity to aid clinicians in the early 

detection of musculoskeletal disorders, such as OA and soft tissue 

pathologies.123,127,129,130 Furthermore, the competency of AI in the precise 

identification of fractures and distinguishing between diverse types of 

spondylitis parallels that of experienced radiologists potentially enabling 

faster management.131–133

In the planning phase, AI resources are able to deliver patient-specific 

preoperative plans, thereby minimizing the necessity for surgeon-delivered 

modifications to the surgical plan.121,123,134 These resources can also 

construct 3D models of patient anatomy, providing orthopaedic surgeons 

with a holistic and detailed visual representation of the surgical area.124,125 

In the operating theatre, AI’s role expands to offering real-time feedback 

and assistance in navigating complex anatomical structures.124,126,135,136

Postoperative care has similarly been affected by the advent of AI, 

aiding in the identification of implant positioning and type, forecasting 

potential implant failure and assisting in planning for future surgical 

interventions.122,137,138 AI-assisted tools have manifested as an 

efficacious solution to the common difficulties in postoperative CT and 

MRI associated with metal-related image artefact and distortion.139 AI 

can also help in determining follow-up recommendation plans based on 

analysing the radiological report.140

Challenges
The field of musculoskeletal AI is filled with optimism, but there are 

substantial challenges that must be addressed to enable safe, unbiased 

and equitable deployment in clinical practice.141–143

Most current ML methods use supervised methods using large data 

sets, which need manual checks and large amounts of data. This means 

that the accuracy of the models relies on the quality of the input data. 

Quality control measures are, therefore, required, and these need time-

consuming human input.

The integration of AI algorithms into the clinical workflow must be 

performed carefully and thoughtfully and be congruent with the existing 

information technology infrastructure.141–143 The replication of AI studies 

on ‘real-life’ data remains problematic due to the sporadic availability of 

training data and code and must be addressed moving forward and is 

sometimes neglected in favour of model performance.142

The data for future AI research must be suitably anonymized with 

consideration of patient privacy and ethical considerations.142 The 

patients’ preference for human experts’ diagnoses accentuates the 

importance of cultivating appropriate levels of trust in AI applications. 

Additionally, considerable challenges persist in data availability and 

model validation, especially for rare musculoskeletal disorders and 

diseases (including vasculitis and CTD). The regulation in AI is developing 

and is vital to ensure that these tools are created, maintained and used 

appropriately in clinical practice.142,144,145
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Conclusions
AI within the musculoskeletal field harbours immense benefits, and as 

detailed earlier, a great deal of work has been performed and is ongoing. 

As research and development progress, AI has the potential to become 

an increasingly vital component of musculoskeletal care. However, the 

above challenges must be considered of utmost importance as the field 

moves forward.146 While AI embodies the promise of enhanced patient 

care, cognizance of the related challenges and ethical considerations 

is indispensable for wider acceptance and implementation of AI in the 

musculoskeletal field. q
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